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DYNAMICS OF ARTICULATED STRUCTURES 

For purposes of this presentation, an articulated structure Is defined as 
an assembly of flexible bodies that may be coupled by kinematic connections 
and force elements that permit large relarive displacement and rotatton. 
Kinemattcs of such systems 1s defined usiqg one reference frame for each body 
in the system and deformation modal coordinates that define displacement 
Fields within flexible bodies. Defornat Lon kinematics are defined by both 
elastic vibration and static correction deformation modes. Linear clastic 
deformatton is presumed; i.e., a linesr stress-strain relation is valid and 
relative displacements within each elbstic component are small enough so that 
the theory of linear elasticity applies. CouFZtng of reference and modal 
coordinates lpads to a system of nonlinear equatfons of motion. Methods of 
automatically generattng and solving these equations of motton are outlined. 

Large Displacement and Rotations of Body Reference Frames 
(reference coordinates) 

Elastic Vibration and Static Correction Deformation Modes 
(modal coordinates: 

Coupled Nonlinear Equations in Reference and Modal Coordinates 

Automated Equation Generation and Solution 
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EULER'S THEOREM 

Euler's theorem guarantees existence of a unit vector u about which an 
x I 'y 1 -z ' reference frame may be rotated by an angle x to bring it from a 
reference x-y-z frame to a general orientation. Components of the unit vector 
u and angle x of rotation are used to define orientation of a reference frame 
in space. 
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EULER PARAMETERS 

A set of four Euler parameters is defined as p, as shown on the chart. 
These four larameters are not independent, since the vector p must be a unit 
vector in R . The direction cosine transformation matrix from the x'-y'-z' 
reference frame to the x-y-z frame is defined as shown. The quadratic nature 
of terms in the transformation matrix, as functions of Euler parameters, leads 
to attractive properties when writing velocity and acceleration equations that 
are needed in the equations of motion. Furthermore, use of Euler parameters 
avoids singular orientation difficulties that are associated with a set of 
three rotation parameters, such as Euler angles or Bryant angles [ 1 , 2 ] .  
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LUMPED MASS FLEXIBLE BODY MODEL 

A lumped mass finite-element formulation is used to carry out vibration 
and static correction mode analysis of each deformable body in an articulated 
structure. A typical point Pi is defined in the undeformed state of the body 
by a constant vector rOi 
undergoes displacement ui in the body reference frame, as shown. 
masses mi at each note in the finite-element model are used in defining 
kinetic properties of the flexible body [ 3 , 4 1 .  

During the process of deformation, this point 
Lumped 

X 
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KINEMATICS 

A vector u of modal d'splacements is defined as a linear combin tion of a 
i 

set of deformation modes 4 3 , j = 1, ---,m. The displacement vector u' of point i 
in the body is provided by a projection matrix P . As noted earlier, the 
direction cosine transformation matrix for the reference frame associated with 
the body is a function of the Euler p rameters of that reference frame. 
Finally, the global position vector R of point i on the body is given as 
shown . f 

J - nodal displacement relative to reference frame 
= aj6 

0 j =j=l,-**,m - deformation modes 

- elastic displacment of mode i 

- direction cosine matrix of reference frame 

i i  u = P u  

A(P) 

P - Euler parameters of reference frame 
Ri = R + A(ri + P i j  aj+ ) 
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VIBRATION AND STATIC CORRECTION MODES 

Boundary cond€tions must be selected for characterizing deformation of 
flexible components. Since kinematic constraints on bodies in an articulated 
structure often lead to statically indeterminant sets of boundary conditions, 
a statically determinant or underdetermined set of boundary conditions is 
selected for use in vibration analysis. Unit loads associated with deleted 
kinematic constraints are used to define static correction modes [ 3 ] .  These 
calculations are carried out with any standard finite-element code that is 
capable of generating lumped mass information. Constants that will appear 
subsequently in the equations of motion are calculated using information 
generated within the finite-element code. 

Calculate Natural Vibration Modes 

Select Boundary Conditions for Flexible Components 

Calculate Static correction Modes for Deleted Constraints 

Calculate Constants for Equations of Motion 
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I KINEMATICS (continued) 

The position relationship derived earlier is differentiated to obtain the 
global velocity vector of node i in the body, as shown. The time derivative 
of the direction cosine orientation matrix yields an expression in the time 
derivative of Euler parameters as shown [ 2 , 3 ] .  The velocity vector may thus 
be written in matrix form for use in derivation of the equations of motion of 
the system. 

+i -2Er 
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KINEMATIC CONSTRAINTS 

A v a r i e t y  of kinematic couplings between f l e x i b l e  bodies i s  der ived i n  
Refs. 2 and 3. J o i n t  d e f i n i t i o n  5. n. 5 .  re ference  frames are f ixed  t o  the  
deformable body t o  def ine  information requi red  t o  wr i t e  kinematic c o n s t r a i n t  
equat ions assoc ia ted  with each j o i n t  i n  the  system. 
a r e  s p h e r i c a l ,  r evo lu te ,  and un ive r sa l  j o i n t s ,  f o r  which c o n s t r a i n t  
equat ions may be found i n  Ref. 3. 

J J  

Shown on the  cha r t  below 

X 

bo 
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KINETICS 

The kinetic energy of a flexible body may be written in terms of time 
derivatives of reference frame generalized coordinates and modal coordinates, 
as shown. Since vectors ri and matrices E, G ,  and A are nonlinear €unctions 
of Euler parameters, the mass matrix of the flexible body is a nonlinear 
function of generalized coordinates, as a result of geometric nonlinearities 
in the system kinematics. c 
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FORCES 

The strain energy U of the flexible body may be written explicitly in 
terms of a modal stiffness matrix Kaa, as shown. 
through direct application of the definition of virtual work lead to nonlinear 
algebraic expressions in generalized coordinates, as shown. These forces 
include both externally applied forces and forces of interaction due to 
compliant couplings between bodies and feedback control actuators. 

Generalized forces defined 

iT 6 W =  1 F [I 
i= 1 

iT 'i 1 -2F Ar G iT 
i=l i= 1 = [  I F  

I= 1 

Q: T 
= [QR Q3 [f3 

500 



EQUATIONS OF MOTION OF A SINGLE BODY 
I The equations of motion of an unconstrained individual flexible body are 
I shown below 131. The system of equations for an articulated structure that is 

made up of multiple bodies connected by kinematic constraints is developed [ 3 ]  
using the Lagrange multiplier form of multi-body system dynamics [1,2]. 
Evaluation of individual terms appearing in the coefficient matrix of 
accelerations and on the right side of the equations of motion is derived by 
expanding the expressions shown and calculating constant coefficients 
associated with deformation modes and mass distribution. 
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CONSTANTS FROM FINITE-ELEMENT MODEL 

Nine sets of constant vectors and matrices shown are calculated, using 
data generated in the finite-element deformation analysis of each flexible 
body. These constants are computed using an intermediate processing program 
[ 4 1  
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NONLINEAR TERMS IN EQUATIONS OF MOTION 

Three typical nonlinear terms appearing in the equations of motion 
presented earlier are shown here, evaluated as linear and quadratic 
expressions in generalized coordinates. All such terms are coded in a 
flexible-body module of the Dynamic Analysis and Design System (DADS) computer 
code. These terms are evaluated at every time step in numerical integration 
of the coupled system of nonlinear equations of motion. 

m 1 
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NUMERICAL SOLUTION 

A variable order, variable step size numerical integration algortthm is 
used to compute the solution of differential-algebraic equations of motion for 
articulated structures. Since step size and order selected by the algorithm 
reflect the error tolerance required and the frequency of oscillation that 
develops, integration cost is influenced by selection of deformation modes in 
the model. Numerical results accumulated to date [4,5] show that prudent 
selection o f  a combination of vibration and static correction modes gives 
reasonable results. Substantial work remains to be done in rational selection 
of these deformat ion modes. 

Variable Order, Variable Step Size Numerical Integration 

Integration Cost is a Function of Frequency Content 

Mixed Vibration and Static Correction Modes Give Best Results 
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FLEXIBLE HINGE DOOR EXAMPLE 

The flextble door structure shown is kinematically coupled to a body that 
is taken to be rigid ground. The revolute joints shown are misaligned so 
that there is no deformation when the door structure lies in the Y-Z plane. 
Any rotation of the door structure leads to deformation of the beam and plate 
structure of the door, which tends to bring it back to the undeformed state. 

X 

p l a t e  

8 m  

A initial r o t a t i o n  ong le  1 5 O  
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FINITE-ELEMENT MODEL OF DOOR STRUCTURE 

A modest finite-element model of the door structure, using plate and beam 
elements, is shown. 

N 2 0  N15 NIO 

I 1 1 ' N I  
N16 NII  N 6  

N * ' : Node Number * * 
P l a t 0  ; 12 ( M e m b r a n e  + Bending)  E l e m e n t s  

E = 2.0 X 10l2 N / m 2  

B e a m  ; IO B e a m  Elements a t  e a c h  b e a m  

E =  2.0 x I O "  N / m 2  
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STATIC CORRECTION MODES 

Boundary conditions for finite-element analysis are selected so that the 
center point of the bottom hinge is fixed in space and x- and y-coordinates of 
the top hinge point are likewise fixed. Five kinematic constraints are thus 
suppressed, two rotations at the bottom hinge and two rotations and one 
translation at the top hinge. Unit torques and a unit force are applied to 
calculate five static correction modes to represent deformation of the 
structure. Vibration modes are likewise calculated [4]. 

al 

L 5 ; r  q u e 

N 3 0 1  

/'\\ I 
unit torque V 

ong z-axis  ' I  ' t  

u n i t  t o r q u e  
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FIRST APPROXIMATE SOLUTION 

Two models were used in a preliminary analysis. The first consisted of 
only five normal vibration modes, with numerical results for the X-coordinate 
of the center of the door shown as a solid line. A five static correction 
mode approximate solution is shown with a dotted line, reflecting much lower 
frequency of vibration of the door structure. To evaluate reasonables of 
predictions, additional modes and combinations of modes are selected. 
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SECOND APPROXIMATE SOLUTION 

The nine normal mode s o l u t i o n  shown r e f l e c t s  a somewhat lower o v e r a l l  
v i b r a t i o n  frequency, but is s t i l l  unreasonable.  As shown by the  do t t ed  and 
dashed curves ,  adding four  normal v ib ra t ion  modes t o  the  f i v e  s t a t i c  
c o r r e c t i o n  modes y i e l d s  only a s l i g h t  change i n  the  p red ic t ion  obtained from 
purely f i v e  s t a t i c  c o r r e c t i o n  modes. This sugges ts  t h a t  s t a t i c  c o r r e c t i o n  
modes dominate the  dynamics of t h i s  example. 

0.10 

0.08 

E 0.06 

0.04 
aJ 
Q1 0.02 
U 
0 c 0.00 

o -0.02 

n 

v 

Y- 

2 
0 -0.04 
0 7 -0.06 
X 

-0.08 

-0.10 

- 8  9N SOLUTION 

.....: 5 s  SOLUTION 
- - - ,  * 4N5S SOLUTION 

h 
.A 

'A 
*.\ 
*.\ -.\ '.> 

\ -.\ ..\ 
*.\ 
*.> 

I 

0.0 0.4 0.8 1.2 1.6 2.0 
Time ( sec ) 

509 



COMPARISON OF COMPUTER SIMULATION TIMES 

As shown in the table below, retention of a substantial number of high- 
frequency normal vibration modes leads to very small step size and ultimately 
exceptionally large computer times. The computer times indicated are on a 
heavily loaded Prime 750 supermini computer. 

Comparison o f  Simulation Times 

T end CPU RMS integratton 

[ secl [ sec) tsecl 
s tepsize 

5.5 solution 2 .o 106 0.47812E-01 
5N solution 2 .o 40 1 0.90934E-02 
9N solution 2 .o 747 1 0.65035E-03 
4N5S solution 2 .o 7281 0.7 549 1 E-03 
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WINDSHIELD WIPER APPLICATION 

I The schematic shown is a model of an automotive windshield wiper 
assembly, in which the crank-link and two connecting links are taken as 
rigid. The left and right wiper arms are modeled as flexible bodies. 
mechanism is driven by applying a torque to the crank link that is a function 
of motor speed. 

The 

BODY 6(LEFT WIPER ARM) 

BODY 4 (RIGHT WIPER AR 

ODY 2 (CRANK LINK) 
REVOLUTE JOINT 

XI 
BODY I (CHASSIS) 
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FINITE-ELEMENT MODEL OF WIPER ARMS 

A modest Beam finite-element model of each wiper  arm is constructed as 
shown. Frict ion torque, as a function of wiper t i p  v e l o c i t y ,  is introduced as 
a force act ing i n  the system, as  shown. 

FRICTION FORCE (N) 
A 

3.0 

2.0 

1.0 

U 
N + * :  NODE NUMBER 
BEAM ELEMENTS 
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NUMERICAL RESULTS FOR WIPER ARM T I P  VELOCITY 

A flexible body solution shown in the solid line predicts vibration at a 
frequency of approximately fourteen cycles per second, relative to essentially 
the same gross motion predicted by a rigid body model of the windshield wiper 
mechanism. 
frequency of approximately thirteen cycles per second, very close to that 
predicted by the articulated structure model. 

Experimental results with the actual system indicate an oscillation 
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STATUS AND DEVELOPMENTS 

The DADS flexible system dynamics code is now functioning and has been 
used to analyze a number of small and intermediate scale applications. A 
commercial version of the software is expected to be available from Computer 
Aided Design Software Incorporated, of Oakdale, Iowa. Extensions are cur- 
rently under way to enhance capability of the code to represent selected 
aspects of space structure dynamics. 

DADS Flexible Code Is Now Functioning 

A Commercial Version of The Code Will 
Be Available Late In 1985 

Extensions Are Under way To Enhance 
Capabilities For Space Structure Dynamics 
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